Wednesday, December 26, 2007


This article refers to the natural event. For other uses, see Avalanche (disambiguation)
An avalanche is a very large slide of snow or rock down a mountainside, caused when a buildup of snow is released down a slope, and is one of the major dangers faced in the mountains. An avalanche consists of rapidly moving granular material that has exceeded the critical static friction threshold and thereby causes additional material to exceed its threshold as well, in a cascading effect.
In an avalanche, large quantities of material, or mixtures of different types of material, fall or slide rapidly under the force of gravity. Avalanches are often classified by what they are made of, for example snow, ice, rock or soil avalanches. A mixture of these would be called a debris avalanche.
A large avalanche can run for many miles, and can create massive destruction of the lower forest and anything else in its path. For example, in Montroc, France, in 1999, 300,000 cubic metres of snow slid on a 30 degree slope, achieving a speed of 100 km/h (60 mph). It killed 12 people in their chalets under 100,000 tons of snow, 5 meters (15 feet) deep. The mayor of Chamonix was convicted of second-degree murder for not evacuating the area, but received a suspended sentence However, it is very doubtful avalanches were used deliberately at the strategic level as weapons; more likely they were simply a side effect to shelling enemy troops, occasionally adding to the toll taken by the artillery. Avalanche prediction is difficult even with detailed weather reports and core samples from the snowpack. It would be almost impossible to predict avalanche conditions many miles behind enemy lines, making it impossible to intentionally target a slope at risk for avalanches. Also, high priority targets received continual shelling and would be unable to build up enough unstable snow to form devastating avalanches, effectively imitating the avalanche prevention programs at ski resorts.

Causes
All avalanches are caused by an over-burden of material, typically snowpack, that is too massive and unstable for the slope that supports it. Determining the critical load, the amount of over-burden which is likely to cause an avalanche, is a complex task involving the evaluation of a number of factors. These factors include:

Contributing factors
Slopes flatter than 25 degrees or steeper than 60 degrees typically have a low risk of avalanche. Snow does not accumulate significantly on steep slopes; also, snow does not flow easily on flat slopes. Human triggered avalanches have the greatest incidence when the snow's angle of repose is between 35 and 45 degrees; the critical angle, the angle at which the human incidence of avalanches is greatest, is 38 degrees. The rule of thumb is: A slope that is flat enough to hold snow but steep enough to ski has the potential to generate an avalanche, regardless of the angle. However, avalanche risk increases with use; that is, the more a slope is disturbed by skiers, the more likely it is that an avalanche will occur. The snowpack on slopes with southern exposures are strongly influenced by sunshine; daily cycles of surface thawing and refreezing create a crust that may tend to stabilize an otherwise unstable snowpack, but the crust, once it has been fractured, may detach itself from the underlying layers of snow, slide, and promote the generation of an avalanche. Slopes in the lee of a ridge or other wind obstacle accumulate more snow and are more likely to include pockets of abnormally deep snow, windslabs, and cornices, all of which, when disturbed, may trigger an avalanche.
Convex slopes are more dangerous than concave slopes. The primary factor contributing to the increased avalanche danger on convex slopes is a disparity between the tensile strength of snow layers and their compressive strength.
Another factor affecting the incidence of avalanches is the nature of the ground surface underneath the snow cover. Full-depth avalanches (avalanches that sweep a slope virtually clean of snow cover) are more common on slopes with smooth ground cover, such as grass or rock slabs. Vegetation plays an important role in anchoring a snowpack; however, in certain instances, boulders or vegetation may actually create weak areas deep within the snowpack.

Terrain
The structure of the snowpack is a strong predictor of avalanche danger. For an avalanche to occur, it is necessary that a snowpack have a weak layer (or instability) below the surface and an overlying slab of snow. Unfortunately, the relationship between easily-observed properties of snow layers (strength, grain size, grain type, temperature, etc.) and avalanche danger are extraordinarily complex; consequently, this is an area that is not yet fully understood. Furthermore, snow cover and stability often vary widely within relatively small areas, and a risk assessment of a given slope is unlikely to remain valid, accurate, or useful for very long.
Various snow composition and deposition characteristics also influence the likelihood of an avalanche. Newly-fallen snow requires time to bond with the snow layers beneath it, especially if the new snow is light and powdery. Snow that lies above boulders or certain types of plants has little to help anchor it to the slope. Larger snow crystals, generally speaking, are less likely to bond together to form strong structures than smaller crystals are. Consolidated snow is less likely to sluff than light powdery layers; however, well-consolidated snow is more likely to generate unstable slabs.

Snow structure and characteristics
Weather also influences the evolution of snowpack formation. The most important factors are heating by the sun, radiational cooling, vertical temperature gradients in standing snow, snowfall amounts, and snow types.
If the temperature is high enough for gentle freeze-thaw cycles to take place, the melting and refreezing of water in the snow strengthens the snowpack during the freezing phase and weakens it during the thawing phase. A rapid rise in temperature, to a point significantly above the freezing point, may cause a slope to avalanche, especially in spring. Persistent cold temperatures prevent the snow from stabilizing; long cold spells may contribute to the formation of depth hoar, a condition where there is a pronounced temperature gradient, from top to bottom, within the snow. When the temperature gradient becomes sufficiently strong, thin layers of "faceted grains" may form above or below embedded crusts, allowing slippage to occur.
Any wind stronger than a light breeze can contribute to a rapid accumulation of snow on sheltered slopes downwind. Wind pressure at a favorable angle can stabilize other slopes. A "wind slab" is a particularly fragile and brittle structure which is heavily-loaded and poorly-bonded to its underlayment. Even on a clear day, wind can quickly shift the snow load on a slope. This can occur in two ways: by top-loading and by cross-loading. Top-loading occurs when wind deposits snow perpendicular to the fall-line on a slope; cross-loading occurs when wind deposits snow parallel to the fall-line. When a wind blows over the top of a mountain, the leeward, or downwind, side of the mountain experiences top-loading, from the top to the bottom of that lee slope. When the wind blows across a ridge that leads up the mountain, the leeward side of the ridge is subject to cross-loading. Cross-loaded wind-slabs are usually difficult to identify visually.
Snowstorms and rainstorms are important contributors to avalanche danger. Heavy snowfall may cause instability in the existing snowpack, both because of the additional weight and because the new snow has insufficient time to bond to underlying snow layers. Rain has a similar effect. In the short-term, rain causes instability because, like a heavy snowfall, it imposes an additional load on the snowpack; and, once rainwater seeps down through the snow, it acts as a lubricant, reducing the natural friction between snow layers that holds the snowpack together. Most avalanches happen during or soon after a storm.
Daytime exposure to sunlight can rapidly destabilize the upper layers of a snowpack. Sunlight reduces the sintering, or necking, between snow grains. During clear nights, the snowpack can strengthen, or tighten, through the process of long-wave radiative cooling. When the night air is significantly cooler than the snowpack, the heat stored in the snow is re-radiated into the atmosphere.

Weather
Due to the complexity of the subject, winter travelling in the backcountry (off-piste) is never 100% safe. Good avalanche safety is a continuous process, including route selection and examination of the snowpack, weather conditions, and human factors. Several well-known good habits can also minimise the risk. If local authorities issue avalanche risk reports, they should be considered and all warnings heeded. Never follow in the tracks of others without your own evaluations; snow conditions are almost certain to have changed since they were made. Observe the terrain and note obvious avalanche paths where vegetation is missing or damaged, where there are few surface anchors, and below cornices or ice formations. Avoid travelling below others who might trigger an avalanche.

Avalanche avoidance
There are several ways to prevent avalanches and lessen their power and destruction. They are employed in areas where avalanches pose a significant threat to people, such as ski resorts and mountain towns, roads and railways. Explosives are used extensively to prevent avalanches, especially at ski resorts where other methods are often impractical. Explosive charges are used to trigger small avalanches before enough snow can build up to cause a large avalanche. Snow fences and light walls can be used to direct the placement of snow. Snow builds up around the fence, especially the side that faces the prevailing winds. Downwind of the fence, snow buildup is lessened. This is caused by the loss of snow at the fence that would have been deposited and the pickup of the snow that is already there by the wind, which was depleted of snow at the fence. When there is a sufficient density of trees, they can greatly reduce the strength of avalanches. They hold snow in place and when there is an avalanche, the impact of the snow against the trees slows it down. Trees can either be planted or they can be conserved, such as in the building of a ski resort, to reduce the strength of avalanches.
Artificial barriers can be very effective in reducing avalanche damage. There are several types. One kind of barrier uses a net strung between poles that are anchored by guy wires in addition to their foundations. These barriers are similar to those used for rockslides. Another type of barrier is a rigid fence like structure and may be constructed of steel, wood or pre-stressed concrete. They usually have gaps between the beams and are built perpendicular to the slope, with reinforcing beams on the downhill side. Rigid barriers are often considered unsightly, especially when many rows must be built. They are also expensive and vulnerable to damage from falling rocks in the warmer months. Finally, there are barriers that stop or deflect avalanches with their weight and strength. These barriers are made out of concrete, rocks or earth. They are usually placed right above the structure, road or railway that they are trying to protect, although they can also be used to channel avalanches into other barriers. Occasionally, mounds of earth are placed in the avalanche's path to slow it down.

Prevention

Terrain management - Terrain management involves reducing the exposure of an individual to the risks of traveling in avalanche terrain by carefully selecting what areas of slopes to travel on. Features to be cognizant of include not under cutting slopes (removing the physical support of the snow pack), not traveling over convex rolls (areas where the snow pack is under tension), staying away from weaknesses like exposed rock, and avoiding areas of slopes that expose one to terrain traps (gulleys that can be filled in, cliffs over which one can be swept, or heavy timber into which one can be carried).
Group management - Group management is the practice of reducing the risk of having a member of a group, or a whole group involved in an avalanche. Minimize the number of people on the slope, and maintain separation. Ideally one person should pass over the slope into an area protected from the avalanche hazard before the next one leaves protective cover. Route selection should also consider what dangers lie above and below the route, and the consequences of an unexpected avalanche (i.e., unlikely to occur, but deadly if it does). Stop or camp only in safe locations. Wear warm gear to delay hypothermia if buried. Plan escape routes. Most important of all practice good communication with in a group including clearly communicating the decisions about safe locations, escape routes, and slope choices, and having a clear understanding of every members skills in snow travel, avalanche rescue, and route finding.
Group size - Group size must balance the hazard of not having enough people to effectively carry out a rescue with the risk of having too many members of the group to safely manage the risks. It is generally recommended not to travel alone. There will be no-one to witness your burial and start the rescue.
Leadership - Leadership in avalanche terrain requires well defined decision making protocols, which are being taught in a growing number of courses provided by national avalanche resource centers in Europe and North America. Fundamental to leadership in avalanche terrain is an honest attempt at assessing ones blind spots (what information am I ignoring?) There is a growing body of research into the psychological behaviors and group dynamics that lead to avalanche involvement. Safety in avalanche terrain
Even small avalanches are a serious danger to life, even with properly trained and equipped companions who avoid the avalanche. Between 55 and 65 percent of victims buried in the open are killed, and only 80 percent of the victims remaining on the surface survive. (McClung, p.177).
Research carried out in Italy (Nature vol 368 p21) based on 422 buried skiers indicates how the chances of survival drop:
(Historically, the chances of survival were estimated at 85% percent within 15 minutes, 50% within 30 minutes, 20% within one hour).
Consequently it is vital that everyone surviving an avalanche is used in an immediate search and rescue operation, rather than waiting for help to arrive. Additional help can be called once it can be determined if anyone is seriously injured or still remains unaccountable after the immediate search (i.e., after at least 30 minutes of searching). Even in a well equipped country such as France, it typically takes 45 minutes for a helicopter rescue team to arrive, by which time most of the victims are likely to have died.
In some cases avalanche victims are not located until spring thaw melts the snow, or even years later when objects emerge from a glacier.

very rapidly from 92 percent within 15 minutes to only 30 percent after 35 minutes (victims die of suffocation)
near zero after two hours (victims die of injuries or hypothermia) Human survival and avalanche rescue
Chances of a buried victim being found alive and rescued are increased when everyone in a group is carrying and using standard avalanche equipment, and have trained in how to use it. However, like a seat belt in a vehicle, using the right equipment does not justify exposing yourself to unnecessary risks with the hope that the equipment might save your life when it is needed.

Search and rescue equipment
Using an avalanche cord is the oldest form of equipment — mainly used before beacons became available. The principle is simple. An approximately 10 meter long red cord (similar to parachute cord) is attached to the person in question's belt. While skiing, snowboarding, or walking the cord is dragged along behind the person. If the person gets buried in an avalanche, the light cord stays on top of the snow. Due to the color the cord is easily visible for rescue personnel. Typically the cord has iron markings every one meter that indicate the direction and length to the victim.

Avalanche cords

Main article: Avalanche transceiver Beacons
Portable (collapsible) probes can be extended to probe into the snow to locate the exact location of a victim at several yards / metres in depth. When multiple victims are buried, probes should be used to decide the order of rescue, with the shallowest being dug out first since they have the greatest chance of survival.
Probing can be a very time-consuming process if a thorough search is undertaken for a victim without a beacon. In the U.S., 86% of the 140 victims found (since 1950) by probing were already dead. Survival/rescue more than 2 m deep is relatively rare (about 4%). Probes should be used immediately after a visual search for surface clues, in coordination with the beacon search.

Avalanche Probes
When an avalanche stops, the deceleration normally compresses the snow to a hard mass. Shovels are essential for digging through the snow to the victim, as the deposit is too dense to dig with hands or skis. A large scoop and sturdy handle are important. Not to mention a large number of diggers. Shovels are also useful for digging snow pits as part of evaluating the snow pack for hidden hazards, such as weak layers supporting large loads.

Other devices
Survival time is short, if a victim is buried. There is no time to waste before starting a search, and many people have died because the surviving witnesses failed to do even the simplest search.
Witnesses to an avalanche that engulfs people are frequently limited to those in the party involved in the avalanche. Those not caught should try to note the locations where the avalanched person or people were seen. This is such an important priority it should be discussed before initially entering an avalanche area. Once the avalanche has stopped, and there is no danger of secondary slides, these points should be marked with objects for reference. Survivors should then be counted to see who may be lost. If the area is safe to enter, a visual search of the likely burial areas should begin (along a downslope trajectory from the marked points last seen). Some victims are buried partially or shallowly and can be located quickly by making a visual scan of the avalanche debris and pulling out any clothing or equipment found. It may be attached to someone buried.
Alert others if a radio is available, especially if help is nearby, but do NOT waste valuable resources by sending a searcher for help at this point. Switch transceivers to receive mode and check them. Select likely burial areas and search them, listening for beeps (or voices), expanding to other areas of the avalanche, always looking and listening for other clues (movement, equipment, body parts). Probe randomly in probable burial areas. Mark any points where signal was received or equipment found. Only after the first 15 minutes of searching should consideration be given to sending someone for help. Continue scanning and probing near marked clues and other likely burial areas. After 30-60 minutes, consider sending a searcher to get more help, as it is more likely than not that any remaining victims have not survived.
Line probes are arranged in most likely burial areas and marked as searched. Continue searching and probing the area until it is no longer feasible or reasonable to continue. Avoid contaminating the scent of the avalanche area with urine, food, spit, blood, etc, in case search dogs arrive.
The areas where buried victims are most likely to be found are: below the marked point last seen, along the line of flow of the avalanche, around trees and rocks or other obstacles, near the bottom runout of the debris, along edges of the avalanche track, and in low spots where the snow may collect (gullies, crevasses, creeks, ditches along roads, etc). Although less likely, other areas should not be ignored if initial searches are not fruitful.
Once a buried victim is found and his or her head is freed, perform first aid (airway, breathing, circulation/pulse, arterial bleeding, spinal injuries, fractures, shock, hypothermia, internal injuries, etc), according to local law and custom.

Witnesses as rescuers
Victims caught in an avalanche are advised to try to ski or board toward the side of the avalanche until they fall, then to jettison their equipment and attempt swimming motions. As the snow comes to rest an attempt should be made to preserve an air-space in front of the mouth, and try to thrust an arm, leg or object above the surface, assuming you are still conscious. If it is possible to move once the snow stops, enlarge the air space, but minimise movement to maximise the oxygen supply. Warm breath may soon cause a mask of ice to glaze over the snow in your face, sealing it against further air.

Victims
An experienced skier participating in a guided trip experienced the effects of an avalanche first-hand. As they set out in the morning, the party experienced "the most stable conditions they could remember." However, during the next 48 hours, the temperature increased, and the wind rose, creating unstable conditions on the mountain. On the tour, the group found themselves a short distance off-course and traversed below a sub-peak. The unstable snowpack underfoot fractured, triggering an avalanche. The mass of snow impacted the man from behind, thrusting him down the hill head-first with his skis trailing behind. Traveling at the speed of the slide, his knees were wrenched continuously. Eventually, he was dragged under the flowing snow and cemented into place. With his nose and mouth filled with snow, his screams could only be heard within a few feet of his position. After a short time, the skier was breathing his own exhaled carbon dioxide, and his body sensations began to dwindle. After roughly ten minutes in that state, he was located using a probe line. Once he was uncovered, CPR and rescue-breathing was administered. The skier was saved and lives to tell about it.

Case Example
In Europe, the avalanche risk is widely rated on the following scale, which was adopted in April 1993 to replace the earlier non-standard national schemes. Descriptions were last updated in May 2003 to enhance uniformity. .
[1] Stability:
[2] additional load:
Gradient:

Generally described in more detail in the avalanche bulletin (regarding the altitude, aspect, type of terrain etc.)
heavy: two or more skiers or boarders without spacing between them, a single hiker or climber, a grooming machine, avalanche blasting.
light: a single skier or snowboarder smoothly linking turns and without falling, a group of skiers or snowboarders with a minimum 10 m gap between each person, a single person on snowshoes.
gentle slopes: with an incline below about 30°.
steep slopes: with an incline over 30°.
very steep slopes: with an incline over 35°.
extremely steep slopes: extreme in terms of the incline (over 40°), the terrain profile, proximity of the ridge, smoothness of underlying ground. European avalanche risk table
Avalanche size:

Avalanche North American Avalanche Danger Scale

Cornice
Debris avalanche
Green Alder
Landslide
Notable avalanches
Pyroclastic flow

No comments: