Wednesday, October 24, 2007


Subclass: Librostoma
Trilobites are extinct arthropods that form the class Trilobita. They appeared in the 2nd Epoch (Series 2) of the Cambrian period and flourished throughout the lower Paleozoic era before beginning a drawn-out decline to extinction when, during the Late Devonian extinction, all trilobite orders, with the sole exception of Proetida, died out. The last of the trilobites disappeared in the mass extinction at the end of the Permian about 250 million years ago (m.y.a.).
Trilobites are very well-known, and possibly the second-most famous fossil group after the dinosaurs. When trilobites appear in the fossil record of the Lower Cambrian they are already highly diverse and geographically dispersed. Because of their diversity and an easily fossilized exoskeleton, they left an extensive fossil record with some 17,000 known species spanning Paleozoic time. Trilobites have been important in biostratigraphy, paleontology, and plate tectonics research. For example, trilobites have been important in estimating the rate of speciation during the period known as the Cambrian Explosion because they are the most diverse group of metazoans known from the fossil record of the early Cambrian (Lieberman, 1999), and are readily distinguishable because of complex and well preserved morphologies. The trilobites are often placed either within subphylum Chelicerata or grouped as its sister group to form the group Arachnomorpha, although several alternative taxonomies are found in the literature.
Different trilobites made their living in different ways. Some led a benthic life as predators, scavengers or filter feeders. Some swam (a pelagic lifestyle) and fed on plankton. Still others (particularly the family Olenidae) are thought to have evolved a symbiotic relationship with sulfur-eating bacteria from which they derived food.

Agnostida
Nectaspida
Redlichiida
Corynexochida
Lichida
Phacopida
Proetida
Asaphida
Harpetida
Ptychopariida Phylogeny
The bodies of trilobites are divided into three parts (tagmata): a cephalon (head), composed of the two preoral and first four postoral segments completely fused together; a thorax composed of freely articulating segments; and a pygidium (tail) composed of the last segments fused together with the telson. The pygidia are fairly rudimentary in the most primitive trilobites. The thorax is fairly flexible—fossilised trilobites are often found curled up like modern woodlice for protection.
Trilobites had a single pair of preoral antennae and otherwise undifferentiated biramous limbs. Each exopodite (walking leg) had six segments, analogous to those of other early arthropods. The first segment also bore a feather-like epipodite, or gill branch, which was used for respiration and, in some species, swimming. The limbs were covered by lateral projections of the exoskeleton called pleural lobes, extending outward from a central axial lobe.
Although trilobites were only armored on top, they still had a fairly heavy exoskeleton, composed of calcite and calcium phosphate minerals in a protein lattice of chitin. Unlike other groups of armored arthropods, which resorb most of their skeletal minerals prior to molting, a trilobite would cast off a fully mineralized molt. Thus a single trilobite animal could potentially have left multiple well-mineralized skeletons behind -- further enhancing the apparent abundance of trilobites in the fossil record. During molting, the exoskeleton generally split between the head and thorax, which is why so many trilobite fossils are missing one or the other. In most groups there were facial sutures on the cephalon to make shedding easier. The cheeks (genae) of the cephalon of trilobites, except some sightless species, supported a pair of compound eyes. The earliest trilobite known from the fossil record is the genus Fallotaspis within Order Redlichiida, dated to some 543 million years ago. Other early genera include Profalloptaspis and Eofallotaspis, all appearing about the same time.
This early trilobite had complex, compound eyes with lenses made of calcite, a unique characteristic of all trilobite eyes. This confirms that eyes of arthropods and probably other animals were already quite developed at the beginning of the Cambrian. Improving eyesight of both predator and prey in marine environments probably provided one of the evolutionary pressures furthering an apparent rapid development of new life forms during what is known as the Cambrian Explosion.
Some trilobites such as those of the order Lichida evolved elaborate spiny forms, from the Ordovician until the end of the Devonian period. Examples of these specimens have been found in the Hamar Laghdad Formation of Alnif in Morocco. Collectors of this material should be aware of a serious counterfeiting and fakery problem with much of the Moroccan material that is offered commercially. Spectacular spined trilobites have also been found in western Russia; Oklahoma, USA; and Ontario, Canada. These spiny forms could possibly have been a defensive response to the evolutionary appearance of fish.
According to New Scientist magazine (May 2005), "some... trilobites... had horns on their heads similar to those of modern beetles." Based on the size, location, and shape of the horns, Rob Knell, a biologist at Queen Mary, University of London and Richard Fortey of London's Natural History Museum, concluded that the most likely use of the horns was combat for mates, making trilobites the earliest exemplars of this behavior. While this study only considered members of the Asaphida family Raphiophoridae, the conclusions are likely to be applicable to other trilobites as well, such as in the Phacopid trilobite Walliserops trifurcatus that had prominent horn-like spines on its cephalon.
Trilobites range in length from one millimeter to 72 cm (1/25 inch to 28 inches), with a typical size range of two to seven centimeters (1 to 3½ inches). The world's largest trilobite, Isotelus rex, was found in 1998 by Canadian scientists in Ordovician rocks on the shores of Hudson Bay.

Sensory organs
Holochroal eyes had a great number of (tiny) lenses (sometimes over 15,000), and are found in all orders of trilobite. These lenses were packed closely together (hexagonally) and touch each other. A single corneal membrane covered all lenses. These eyes had no sclera, the white layer covering the eyes of most modern arthropods.

Holochroal eyes
Schizochroal eyes typically had fewer (and larger) lenses (to around 700), and are found only in Phacopida. The lenses were separate, with each lens having an individual cornea which extended into a rather large sclera.

Schizochroal eyes
Abathochroal eyes had around 70 small lenses, and are found only in Cambrian Eodiscina. Each lens was separate and had an individual cornea. The sclera was separate from the cornea, and did not run as deep as the sclera in schizochroal eyes.



Abathochroal eyes
An egg hatched to give a tiny larva called a protaspid, in which all segments are fused into a single carapace. Subsequent thoracic segments were added just ahead of the pygidium ("pygidial release") in successive molts during an intermediate stage called meraspid, until finally the adult number of segments was reached, at which point the animal is called a holaspid. In many species, molting continued during the holaspid stage with no changes in segment number. Trilobite larvae are reasonably well known and provide an important aid in evaluating high-level phylogenetic relationships among trilobites.

Development
When describing differences between different taxa of trilobites, the presence, size, and shape of the cephalic features above are often mentioned.
Figure 1 shows gross morphology of the cephalon. The cheeks (genae) are the pleural lobes on each side of the axial feature, the glabella. When trilobites molted or died, the librigenae (the so-called "free cheeks") often separated, leaving the cranidium (glabella + fixigenae) exposed. Figure 2 shows a more detailed view of the cephalon.

Trilobite Terminology
Based on morphological similarities, it is possible that the trilobites have their ancestors in arthropod-like creatures such as Spriggina, Parvancorina, and other trilobitomorphs of the Ediacaran period of the Precambrian. There are many morphological similarities between early trilobites and other Cambrian arthropods known from the Burgess Shale, the Maotianshan shales at Chengjiang and other fossiliferous locations. These are investigated further here: [1] It is reasonable to assume that the trilobites share a common ancestor with these other arthropods prior to the Ediacaran-Cambrian boundary.

Origins
The exact reason for the extinction of the trilobites is not clear, although it would seem to be no coincidence that their numbers began to decrease with the appearance of the first sharks and other early gnathostomes in the Silurian and their subsequent rise in diversity during the Devonian periods. Trilobites may have provided a rich source of food for these new animals.
Additionally, their relatively low numbers and diversity at the end of the Permian no doubt contributed to their extinction during that great mass extinction event. Foreshadowing this, the Ordovician mass extinction, though somewhat less substantial than the Permian one, also seems to have significantly narrowed trilobite diversity.
The closest extant relatives of trilobites may be the horseshoe crabs, according to Fortey (2000), or the cephalocarids, according to Lambert (1985).

Extinction
Trilobites appear to have been exclusively marine organisms, since the fossilized remains of trilobites are always found in rocks containing fossils of other salt-water animals such as brachiopods, crinoids, and corals. Within the marine paleoenvironment, trilobites were found in a broad range from extremely shallow water to very deep water. The tracks left behind by trilobites crawling on the sea floor are occasionally preserved as trace fossils. Trilobites, like brachiopods, crinoids, and corals, are found on all modern continents, and occupied every ancient ocean from which fossils have been collected.
Trilobite fossils are found worldwide, with many thousands of known species. Because they appeared quickly in geological time, and moulted like other arthropods, trilobites serve as excellent index fossils, enabling geologists to date the age of the rocks in which they are found. They were among the first fossils to attract widespread attention, and new species are being discovered every year. Some Native Americans, recognizing that trilobites were water creatures, had a name for them which means "little water bug in the rocks".
A famous location for trilobite fossils in the United Kingdom is Wren's Nest, Dudley in the West Midlands, where Calymene blumenbachi is found in the Silurian Wenlock Group. This trilobite is featured on the town's coat of arms and was named the "Dudley locust" or "Dudley bug" by quarrymen who once worked many of the now abandoned limestone quarries. Other trilobites found there include Dalmanites, Trimerus, Bumastus and Balizoma. Llandrindod Wells, Powys, Wales, is another famous trilobite location.
Spectacular trilobite fossils, showing soft body parts like legs, gills and antennae, have been found in British Columbia (Burgess Shale Cambrian fossils, and similar localities in the Canadian Rockies); New York State (Odovician Walcott-Rust Quarry, near Utica, N.Y., and the Beecher Trilobite Beds, near Rome, N.Y.), in China (Burgess Shale-like Lower Cambrian trilobites in the Maotianshan shales near Chengjiang), Germany (the Devonian Hunsrück Slates near Bundenbach, Germany) and, much more rarely, in trilobite-bearing strata in Utah and Ontario.
Trilobites are collected commercially in Russia (especially in the St. Petersburg area), Germany, Morocco's Atlas Mountains, (where a burgeoning trade in faked trilobites is also under way), Utah, Ohio, British Columbia, and in other parts of Canada.

Gallery

Prehistoric life
List of trilobites

No comments:

LeftHit.com